Arch Network Rollback Mechanism

1 Introduction

In this document, we provide an explanation of the rollback and reapply mecha-
nisms implemented in the arch network. This system ensures that transactions
are correctly processed, either reverting their effects when necessary (rollback)
or reinstating them when conditions permit (reapply). We will delve into how
the transaction graph is built, how transactions are validated, and the intricate
logic governing rollback and reapplication.

2 Transaction Graph Overview

A transaction graph models dependencies between transactions, capturing parent-
child relationships. Each node in the graph represents a transaction, while di-
rected edges indicate dependencies.

2.1 Graph Representation

e Nodes: Represent individual transactions.

Edges: Directed links that show transaction dependencies (e.g., transac-
tion T depends on T1).

Adjacency List: The internal data structure for storing the graph, using
a HashMap.

Source Nodes: Transactions with no dependencies (i.e., no incoming
edges).

3 Rollback Mechanism

Rollback is the process of undoing transactions, ensuring that invalid or or-
phaned transactions do not remain in the system.



3.1 Conditions for Rollback

1. If a transaction has been anchored in Bitcoin but its corresponding Bitcoin
transaction is missing, it should be rolled back.

2. If a transaction is already marked as rolled back, it should be excluded
from further rollback processing.

3. State-only transactions (transactions that do not have an associated Bit-
coin transaction) are only included for rollback if their parent transactions
are also rolled back.

3.2 Rollback Execution
3.2.1 Step 1: Graph Construction
e Start at the target transaction (arch_tzid) to be rolled back.
e Expand backwards to identify dependencies (parent transactions).

— If a parent transaction is anchored but not found in Bitcoin, it is
included.

— If a parent transaction is state-only, it is marked for further valida-
tion.

e Expand forwards to ensure all affected child transactions are properly
processed.

— Include transactions that have not been previously rolled back.

3.2.2 Step 2: Validation

Each transaction is validated using:

e check_if _arch_tx_is_anchored_in_btc(txid): Determines if the transaction
is associated with a confirmed Bitcoin transaction.

e check_if_arch_tx_has_been_rolled_back(txid): Checks if the transaction
has already been rolled back.
3.2.3 Step 3: Recursive Expansion

e If a transaction is included in rollback, its dependencies are explored re-
cursively.

e Transactions marked as FxcludeButCheckNexts are not added but their
dependencies are still examined.

e Finally, transactions marked for rollback are processed accordingly.



3.3 Example: Rollback in a Simple Chain
Given a transaction chain Ty — To — T3, where:

e T3 has a confirmed Bitcoin transaction.

e T, is a state-only transaction.

e T3 has a missing Bitcoin transaction.

Rollback Process:

1. Identify that T3 is missing in Bitcoin.

2. Move backwards:

e T, is state-only — Exclude but check T7.

e T; is found — Exclude (as it is already confirmed).
3. Move forwards:

e If T5 was included in rollback, all its child transactions would be
examined.

4 Reapply Mechanism

Reapplication is the process of reinstating transactions that were previously
rolled back. This is necessary when conditions for valid inclusion are restored
(e.g., a Bitcoin transaction is later confirmed).

4.1 Conditions for Reapply

1. If a transaction was previously rolled back but is now confirmed in Bitcoin,
it should be reapplied.

2. Transactions that depend on a re-applied transaction should also be re-
considered.

3. State-only transactions are included if their required parent transactions
exist.

4.2 Reapply Execution
4.2.1 Step 1: Graph Construction

e Start from the target transaction (arch_tzid) being reapplied.
e Expand backwards:

— Include transactions that were previously rolled back.



— Ensure all dependencies exist.
e Expand forwards:

— Check if the transaction is anchored.

— Include state-only transactions to maintain execution consistency.

4.3 Example: Reapply in a Simple Chain
Using the previous rollback example:

e 11 — Th — T3, where T3 was rolled back because its Bitcoin transaction
was missing.

e Later, T3’s Bitcoin transaction is found, requiring it to be reapplied.
Reapply Process:

1. Identify T3 as a reapply candidate.

2. Move backwards:

e Ty was previously rolled back — Include it.

e T is already confirmed — Exclude.

3. Move forwards:

e Include child transactions that were also rolled back.

5 Conclusion

The rollback and reapply mechanisms ensure the integrity of transaction ex-
ecution in a dependency graph. The system carefully tracks dependencies,
validates conditions, and applies recursive logic to maintain correctness. By
implementing thorough checks and recursive expansion, the transaction graph
builder efficiently processes rollback and reapplication scenarios, even in com-
plex transactional structures.



	Introduction
	Transaction Graph Overview
	Graph Representation

	Rollback Mechanism
	Conditions for Rollback
	Rollback Execution
	Step 1: Graph Construction
	Step 2: Validation
	Step 3: Recursive Expansion

	Example: Rollback in a Simple Chain

	Reapply Mechanism
	Conditions for Reapply
	Reapply Execution
	Step 1: Graph Construction

	Example: Reapply in a Simple Chain

	Conclusion

